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Abstract

Pooling under a softmax operation and Gaussian-like tuning in the form of a normalized dot-
product were proposed as the key operations in a recent model of object recognition in the ventral
stream of visual cortex. We investigate how these two operations might be implemented by plausible
circuits of a few hundred neurons in cortex. We consider two different sets of circuits whose different
properties may correspond to the conditions in visual and barrel cortices, respectively. They constitute
a plausibility proof that stringent timing and accuracy constraints imposed by the neuroscience of
object recognition can be satisfied with standard spiking and synaptic mechanisms. We provide
simulations illustrating the performance of the circuits, and discuss the relevance of our work to
neurophysiology as well as what bearing it may have on the search for maximum and tuning circuits
in cortex.

1 Introduction

A recent theory of object recognition in the feed-forward pathway of the ventral stream in primate visual
cortex [28, 30] is based on a hierarchical model with two main operations iterated several times throughout
the hierarchy. The two basic operations are a bell-shaped tuning mechanism to provide selectivity of units
– learned in an unsupervised way – along the pathway and a maximum-like operation to achieve invariance
for position, scale and clutter while maintaining selectivity. To support the biological plausibility of the
theory it is important to show that these two basic operations can be implemented using well-established,
plausible properties of neurons and synapses. The primary goal here is to describe realistic circuits for the
maximum and tuning operations utilized by this model. There are several possible circuit designs that
can theoretically provide the level of robustness required by model simulations, and yet, little is known
about how such circuits might be implemented in the brain. The circuits described herein therefore
represent a plausibility proof and may also be seen as specific hypotheses that neurophysiologists may
try to prove or disprove using, for example, extracellular and intracellular recordings.

Several groups have reported neurons in visual cortex that respond rapidly and sub-linearly to the
combined presentation of two simple stimuli in their receptive field [10, 19], i.e. the response to the
combined stimulus is significantly smaller than the sum of the responses to the single stimuli. It has
been proposed that, instead of summing the inputs, these neurons compute either the maximum or the
average of the inputs. Normalization circuits were suggested for gain control in [3] and for the biased
competition model in [5] (see also [26, 27] and for older work on related dynamics of shunting inhibition
[13]). Another possible mechanism for gain control relies on synaptic depression [1]. Several possible
circuits for computing the maximum operation have been proposed on an abstract level [26, 38], but were
not investigated with respect to their biophysical plausibility. A recent study presented a framework to
unify both computations, softmax and tuning, providing a single equation that will produce either of the
two behaviors depending on a small set of parameters [18]. The circuits presented here share some of
the general architectural features presented in the above research. Additionally, we emphasize biological
plausibility to a novel extent.
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First, we introduce quite restrictive timing constraints on the circuits performing both computations
imposed by physiological data and discuss how and where such constraints arise. We then present two
different coding schemes in different sensory cortices and their implications, leading to the development
of two sets of circuit models matched to the conditions prevalent in the respective areas. In section 2
we describe the architecture, dynamics, parameters and results of the Population Packet Code models,
followed by the Poisson Code models in section 3 and a discussion of the results and their relevance.

1.1 Time, computational, and bandwidth constraints

A plausible circuit must satisfy several constraints imposed by the physiological mechanisms underlying
synaptic transmission: we must perform the above computations assuming that information leaves and
arrives in discrete spikes. Furthermore, object recognition simulations with a computational model [30]
suggest that the connections between visual areas must be able to relay at least 2 bits of information
(within about 10 ms– to be discussed later), i. e., represent approximately 4 different levels of spike
activity at the population level during time bins of as little as around 10-20 ms. It has been found that
the model is robust to perturbations of the max and tuning operations. In particular, the input to the
highest level can be binarized without significantly affecting performance in multi-class recognition tasks.
The entire visual recognition model, encompassing many maximum and tuning sub-circuits, must be able
to perform the basic computation within an amount of time that is faithful to the known physiology.
Recordings from inferotemporal cortex (IT) [16] reveal that information containing sufficient accuracy
for good categorization arrives in anterior IT about 100-120 ms after stimulus onset and about 20 ms
after onset of activity in AIT (which is about 80 ms after stimulus onset). In addition, [16] found that
neural activity in a population of 256 neurons during a time bin of just 12.5 ms at around 20 ms after
onset of the AIT response contain significant information for good categorization accuracy. This implies
that each stage in the recognition model – roughly corresponding to a visual area (V1, V2, V4, PIT and
AIT) – has about 10 to 20 ms for processing and representing the information. In the mammalian brain,
the firing rates of excitatory cells in visual cortex rarely exceed 100Hz, and we can expect at most 1-2
spikes per neuron within the prescribed time window. Thus, a single neuron cannot possibly provide
enough dynamic range given the timing constraints imposed by available physiological data.

To overcome this insufficiency, we replace each unit with an ensemble of n cells. All cells in an ensemble
have similar, but not identical, parameters and receive highly correlated inputs from the other units in the
circuit. Instead of 0 or 1 spike, the postsynaptic cell can now receive up to 2n spikes, i. e., the dynamic
range of the input is multiplied by n, as shown in Fig. 11. In early stages of the visual pathway, a large
dynamic range of the inputs is needed, whereas at the other extreme in IT, only the binary presence or
absence of each feature has to be conveyed.2 In the spiking circuits presented below, we therefore consider
ensembles of spiking neurons for each unit in the computational model presented in [30]. In particular,
we will also consider redundant parallel copies of circuit inputs, outputs, and networks themselves in
order to overcome the above constraints placed on the timing and resolution of the two computations of
interest. This is the essence of our contribution: we use ensembles of redundant spiking cells to achieve
fast, “non-binary” computation.

1.2 Different Coding Regimes in Sensory Cortices

Neurons in the visual cortex of cats and primates are thought to have spontaneous and evoked firing
rates on the order of tens of Hertz. At these rates, Poisson spike trains are a fair approximation for the
observed firing patterns. Each presynaptic neuron can contribute up to 3-4 spikes within the first 20-30ms
of processing in the postsynaptic cell and dynamic circuit models can assume that the underlying rate of
the Poisson spike train inputs is constant.

However, there are other sensory cortices in which the coding is very different. Rodent somatosensory
“barrel” cortex is an example for extremely sparse representation of sensory stimuli. Both the spontaneous

1It is thought that the number of cells per ensemble n decreases along the visual hierarchy from V1 to IT.
2Contrast invariance data provide some indirect support for the idea that the cables get thinner along the hierarchy. [29]

showed that the steepness of the contrast-response functions of neurons increases from LGN through V1, V2 to MT and
that “cells become, in the contrast domain, progressively more like switches, being either on or off” [20].
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Figure 1: Signal propagation between two somata with spiking neurons and “cables”. Each of the
ensemble cells on the bottom, which receive highly correlated input, spikes independently. Each spike is
propagated independently in its own “wire” in the “cable” and then triggers neurotransmitter release at
one synapse for each of the ensemble postsynaptic neurons. This process is used for each synapse in the
model.

and evoked firing rates in barrel cortex have been estimated to be below 1Hz by several groups. In
other words, a single neuron responds to a given stimulus with on average less than one spike per trial,
i. e., either zero or one spike. These extremely low rates in conjunction with precise spike timing call
for circuits that perform computations based on a single volley or “packet” of incoming spikes from an
ensemble of presynaptic neurons. We call the corresponding coding scheme Population Packet Code.

Rat primary somatosensory cortex (SI) is an ideal model system to address questions about circuitry
and coding, not only because of its sparse coding but also due to its regular columnar architecture, the
barrel columns [35] and its externalized receptors, the vibrissae. These properties allow exquisite control
over the stimulation, recording and analysis of discrete channels of information processing which are
impossible with visual stimulation, since every visual stimulus will excite a large number of photoreceptors
while the deflection of a single whisker only activates a single follicle. In addition, SI shares several basic
properties of its circuitry and cells with cat or primate primary visual cortex (V1) and the two systems
exhibit similar generalization and learning capabilities, likely because both are high-resolution sensory
systems.

2 Population Packet Code Models

Transferring analog graded information with digital spikes poses the problem of how to encode analog
values with spikes. Three common proposals to overcome this problem are to either use the population
firing rate, a purely temporal code such as time-to-spike or representations based on synchrony. Our
proposed coding scheme lies somewhat in between continuous population rate coding and synfire chains,
two more widely studied coding schemes [32]. Given the constraints outlined above, we assume here that
information is coded by the number of spikes in a brief packet of spikes from a presynaptic population,
i.e., by a short-time “packet” population rate code. In this coding scheme, when a single cell integrates
spikes from several converging inputs, the dynamic range of the signal is strongly compressed. Either the
combination of inputs from the ensemble of presynaptic neurons provides enough excitatory conductance
to drive the postsynaptic membrane potential above spike threshold or not. Considering an ensemble of
identical postsynaptic neurons all receiving identical input from the presynaptic ensemble, the responses
of all cells are identical. Thus, there will be no postsynaptic spikes for any combination of inputs below
a certain threshold. Above this threshold, all postsynaptic cells will spike together. The dynamic range
of the signal is compressed into a binary signal. However, neurons in cortex show diversity in their
morphology and physiological parameters and receive ongoing “background”, noise-like input from many
different presynaptic cells that are overlapping but not identical for a given set of postsynaptic neurons.
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It has been shown that this synaptic background input can decrease the slope of the spike probability
function dependent on input strength [6]. In an ensemble of neurons, the synaptic activity together with
variable intrinsic properties of the cells effectively linearizes the transfer function of the ensemble under
the proposed coding scheme (see also [25] for a general argument).

2.1 Network architecture for softmax and Gaussian-like tuning

The population packet code model is a simplified canonical cortical microcircuit [8] using ensembles of
integrate-and-fire neurons. Importantly, the same canonical circuit perform either a max or a tuning
operation depending on just different synaptic conductance values. In the proposed coding scheme, com-
putation has to be quasi-instantaneous, i. e., carried out over in a short period of time during which
each neuron can only spike at most once or twice. Thus the notion of a steady state firing rate is not
appropriate for this case. Unlike the circuit presented in [21], which operates on a timescale of hundreds
of milliseconds, our model is entirely feed-forward since the need for very fast and inherently transient
computation implies that recurrent connections would most likely be too slow to contribute.
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Figure 2: Population packet code network architecture. Small circles indicate excitatory synapses, bars
represent inhibitory connections. Note that the same circuit is used to approximate a max as well as a
tuning operation with different conductances for some of the synapses.

The most salient feature of our model architecture is the combination of monosynaptic excitation
(x → y) with disynaptic inhibition (x → p → y), which is strongly supported by the observation
that strong excitation in form of an excitatory postsynaptic potential (EPSP) is generally followed by
an inhibitory postsynaptic potential (IPSP) after about 4ms, which has been made during intracellular
recordings by several labs [22, 24, 33, 34]. Following the analogy with barrel cortex, the x units correspond
to thalamic cells while the p, y and z units correspond to cortical cells. The inhibitory interneurons p
synapse onto y units of the same channel as well as the other channel. The operating regime of these
interneurons will be the determining factor for which computation (max or tuning) is performed by the
microcircuit. Both y units synapse onto the output z unit, which relays the output. Each unit depicted
in Fig. 2 is implemented as an ensemble of 100 cells modeled as a variant of integrate-and-fire neurons as
described below.

Sparse connectivity Although commonly used in models and simulations, there has been no anatom-
ical evidence for ensembles of hundreds of neurons exhibiting all-to-all connectivity. Instead, connectivity
patterns of cortical neurons depend on spatial distance. Although more careful analysis reveals a depen-
dence on specific cell types [36, 37], nearby neurons are generally more interconnected and show a high
correlation in their membrane potential [22]. Because not all cells in an ensemble are driven by exactly
the same primary input, their output is more variable, increasing the dynamic range of the ensemble.
We model this kind of connectivity by using a noisy Gaussian synaptic strength pattern between a given
presynaptic cell and all its potential targets in the postsynaptic ensemble. For a presynaptic cell with
index m and a postsynaptic cell with index n, the synaptic scaling factor is

g̃mn = exp(
−(m− n)2

2σ2
d

) · N (1, σg) (1)
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Consistent with experimental observations [31], inhibitory interneurons receive less specific inputs,
i. e., σd is larger for interneurons. The parameters used for these simulations are σde = 50 and σdi = 100.

For the max computation, the synaptic conductances were ĝxy = 1.2nS, ĝxp = 0.16nS, ĝpy = 0,
ĝpyl = 0.8nS and ĝyz = 0.5nS. The input conductance to the inhibitory interneurons p is smaller than
the inputs to the excitatory neurons because of the different morphology, physiology and connectivity of
these cells. The, in comparison to the tuning, relatively high ĝxp causes the p units to be fairly active
even for moderate input levels, causing strong cross-inhibition via the cross-channel p → y synapse.

For the tuning computation, the synaptic conductances were ĝxy = 1.2nS, ĝxp = 0.09nS, ĝpy = 4nS,
ĝpyl = 4nS and ĝyz = 0.72nS. The tuning point, i. e., the input eliciting the maximal output, is governed
by the balance of excitatory and inhibitory input to the y unit in combination with the transfer function
of the p unit. The lower ĝxp in this configuration causes the p units to be activated only for stronger
inputs, causing the decreasing output for those high input values because the inhibitory transfer function
is steeper than the excitatory one, compatible with high-threshold, high-gain inhibitory interneurons
found in cortex such as Chandelier cells [39].

2.2 Neural dynamics

Each cell is modeled as a conductance-based single compartment leaky integrate-and-fire neuron with a
simple kinetic model of neurotransmitter receptors. Variables and constants that are unique to each of
the nw instances in a group are marked with upper indices such as V m

i and similarly for terms specific
to an instance of a synapse such as gmn

ij , the conductance of the synapse between cell m of group i and
cell n of group j. If the upper indices are missing, the value is the same for all instances.

2.2.1 Integrate-and-Fire dynamics

The membrane potential of a postsynaptic neuron is calculated according to the membrane equation

Cn
j

dV n
j

dt
=
∑
i,m

gmn
ij (Eij − V n

j ) + gLj(ELj − V n
j ) (2)

The capacitive current charging the cell membrane is equal to the sum of the synaptic and leak currents.
In order to better capture the firing properties of cortical neurons, we do not reset the membrane potential
once it reaches the spike threshold Vθ but instead activate a strong hyper-polarizing current with a time
constant of a few milliseconds which will bring the cell’s potential back to its “resting” state.

Intrinsic cell parameters Neurons in cortex have very different morphologies and channel distri-
butions. While we cannot model these directly in our single compartment models, we impose some
variability on the resulting physiological parameters such as membrane capacitance, input resistance and
spike threshold. In accordance with several physiological studies, interneurons are assumed to be smaller,
i. e., having smaller membrane capacitance. The interneurons in this model are of the high-threshold,
high-gain class discussed in numerous studies, i. e., their spike threshold is higher than for the excitatory
neurons (Vθe = −50mV , Vθi = −45mV ). The membrane capacitance of a cell is a truncated normally
distributed random but fixed variable of the form: Cn

j = Ĉ[e,i] · C̃n
j with C̃n

j = N (1, σC) ∈ [0.5, 1.5]. The
reversal potential of the leak current is set to EL = −70mV and its conductance is gL = 10nS.

2.2.2 Synaptic input

Release of neurotransmitter, the first step of synaptic transmission, is modeled as an all-or-none release
of one “vesicle” of 1mM transmitter into the synaptic cleft which is present for 1ms.

To model ionotropic receptors such as AMPA/Kainate and GABAA receptors, we assume simple two-
state kinetics where the receptor is either open or closed. In the closed state it can bind neurotransmitter
which results in an transition to the open state. In the open state, the channel will close as a result of
dissociation.

C + T ⇀↽ O, (3)
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Figure 3: Mean response of max circuit depicted in Fig. 2 over 50 runs for all possible combinations of 0,
50, 75 and 100 spikes per input packet, plotted against the desired (true) maximum of the inputs (left).
Histogram of all outputs (spike count in output packet) for three cases (right). The true maximum of
the inputs is 50, 75 and 100 spikes, respectively (top to bottom).

These simple kinetics can be described by the following first-order kinetic equation:

drmn
ij

dt
= αijT

m
ij (1− rmn

ij )− βijr
mn
ij (4)

The rate constants α and β, are set to the values reported in [7] for either AMPA and GABAA, respec-
tively. The synaptic input conductance is calculated from the fraction of open channels calculated in (4),
adding a normally distributed random background component (see below):

gmn
ij =

[
rmn
ij ĝij g̃

mn
ij +N (ḡij , σgij )

]+ (5)

The current results are based on AMPA as excitatory and GABAA as inhibitory neurotransmitters
and their respective receptors. The parameters are EAMPA = 0mV , EGABAA

= −80mV , αAMPA =
1.1 · 106M−1s−1, αGABAA

= 5 · 106M−1s−1, βAMPA = 190s−1, βGABAA
= 180s−1.

Noise-like background synaptic input Background synaptic noise, which is likely to represent
unknown inputs, helps to recover the dynamic range of a population of neurons by linearizing the spike
probability function [6]. If different neurons in an ensemble have slightly different synaptic inputs, their
membrane potential will slightly vary. Thus, the same incoming postsynaptic potential (PSP) might
drive some neurons with higher membrane potentials above the spike threshold, initiating a spike, while
others with lower potential will stay below threshold and not spike. Adding synaptic background inputs
also introduces a variability in the output spike timing. Compatible with data from in vivo and in vitro
recordings, spike time jitter decreases with increasing strength of the input. The parameters used for the
conductances (5) are ḡe = 2nS, ḡi = 1nS, σge = 1nS, σgi = 1nS.

2.2.3 External input

As input to the circuit, the x units receive a variable number of spikes proportional to the input strength.
Each spike is assumed to originate at one out of 100 presynaptic cells. The connectivity pattern is the
same Gaussian shaped synaptic strength profile as for the other excitatory units in the model and the
spike arrival times are normally distributed as N (t̄x, σtx) with t̄x = 30ms and σtx = 5ms.

2.3 Population Packet Code Simulations

2.3.1 Maximum

Figure 3 (left) shows the mean output over 50 runs of the circuit depicted in Fig. 2 in maximum con-
figuration for all possible combinations of four levels of inputs (0, 50, 75, 100 spikes in a packet). For
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Figure 4: Output (spike count in output packet) of a one-dimensional Gaussian-like tuning circuit tuned
to 50 a spike packet input (left). Output (spike count in output packet) of the two-dimensional tuning
circuit depicted in Fig. 2 tuned to the combination of two 50 spike packet inputs (right).

input combinations including the maximum (100 spikes) input, the circuit output is actually below the
desired maximum value. Interestingly, similar effects can be seen in vivo, e. g., in rat barrel cortex ,
where subthreshold neural responses tend to be more suppressive for stronger inputs. The histograms
on the right show the distribution of outputs for the three possible desired output values (50, 75 and
100 spikes from top to bottom). As mentioned above, the circuit underestimates the desired output for
inputs that include full activity (100 spikes) for at least one of the two channels. For all three cases,
about 20-25% of the runs result in an output that does not match the desired output value. While this
behavior is consistent with physiological data, it has to be investigated how well a large-scale model of
object recognition [30] will perform under these conditions.

2.3.2 Tuning

In the tuning configuration, the circuit shown in Fig. 2 effectively performs a one-dimensional tuning for
each of the input channels, i. e., each y unit will be maximally active for the input level it is tuned to
and activity will decrease for lower or higher input values. The y unit activity is then combined to yield
the output which is tuned in the multidimensional space. An example for the activity of a y unit can
be seen in Fig. 4 (left). In this case, the circuit is tuned for an input of 50 spikes. Output activity is
highest for a 50 spike packet and falls off on both sides. The tuning curve is not completely symmetric
but approximates a Gaussian tuning curve well.

The output of a circuit tuned to the combination of two 50 spike packets as inputs is shown on the
right of Fig. 4. The peak output activity is located at the (50,50) input pair and the response falls off in
a roughly Gaussian (bell-shaped) fashion for any other input configuration.

2.4 Problems and future goals

• The main issue with the circuit of Fig. 2 is how well it can be extended to a significantly higher
number of inputs and dimensions.

• The performance in the softmax configuration should be improved in order to meet the likely
requirements of the recognition model (which are not stringent however).

• Learning the parameters that determine the Gaussian-like “centers” – that is the optimal stimulus
for the tuning circuit – is an open problem.

• More careful measurements of the time required by the computation and of the bandwidth of the
output activity are needed.
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Figure 5: Maximum circuit architecture (left), and tuning circuit architecture (right), assuming Poisson
distributed inputs. Small circles and bars denote excitatory and inhibitory connections respectively.

3 Poisson Spike Code Models

In this section we present independent spiking models for the maximum operation performed by complex
V1 cells, and for normalized tuning observed in simple V1 cells. In both cases, and in the simulations
which follow, we assume that the networks are driven by Poisson distributed spike inputs. For the
maximum circuit, our goal is to output a sequence of spikes that encodes the maximal level of activity
present at the circuit’s inputs. In the case of the tuning operation, we wish to output a sequence of spikes
which encodes some notion of the similarity between the input activity pattern and a preferred stimulus.
We describe a circuit for which the similarity peaks when the input activity vector is collinear with the
preferred stimulus, and falls off to zero along orthogonal directions in a Gaussian-like fashion. In the
sections that follow, we will make these ideas more precise.

3.1 Max Circuit Architecture

3.1.1 Neural Dynamics

The maximum circuit design incorporates leaky integrate-and-fire models of neurons augmented with
plausible synapse dynamics and an absolute refractory period. The choice of a first order linear model
for the membrane dynamics was made in order to make large scale simulations involving many cir-
cuits computationally tractable. The maximum operation itself can be seen as a particular instance of
K-winner-take-all behavior, and has been explored in networks of continuous nonlinear dynamical ele-
ments [2, 14, 15], and to a lesser extent, in networks of “spiking” elements [17, 23]. The use of dynamics
which include reset rules, such as integrate-and-fire neurons, makes detailed analytical explorations of
the behavior of interconnected networks of such elements difficult, and we do not carry out such an
analysis here. Instead, we provide a description of the membrane potential of a single unit as it evolves
in time, explain how individual elements should be connected together and tuned in order to compute
the maximum over the input activities, and finally, show how multiple copies of circuits can be arranged
to match the timing observed in cortex.

The particular winner-take-all design at the core of the maximum implementation exploits a balance
between self-excitation and, in this case, all-to-all inhibitory dynamics. The connections are illustrated
graphically in Figure 5 (left), where we denote excitatory feedback connections with small circles and
inhibitory connections with bars. For additional computational simplicity, we do not include sign-changing
interneurons in the inhibitory feedback paths.

We denote by VL the neuron’s resting potential, gL the leakage conductance, and by gj the synaptic
conductances. With these definitions, the dynamics of each cell’s subthreshold membrane potential Vi(t)
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can be described by:

Cm
dVi

dt
= gL(VL − Vi) +

N∑
j=1

gj(V r
j − Vi) i = 1, ..., N. (6)

The gj = gj(t) are time-varying conductances that depend on activity at the incoming synapses, while
Cm, gL and VL, are constants. The synaptic reversal potentials V r

j take on one of two constant values
V r

j ∈ {Vex, Vinh} depending on whether the synapse is excitatory (Vex > Vθ) or inhibitory (Vinh <
Vθ, Vinh 6= VL). The subthreshold dynamics (6) are combined with a nonlinear reset rule which stipulates
that when the membrane potential Vi(t) reaches the threshold Vθ, an action potential is fired and the
potential is then immediately reset to the reset voltage V0 < Vθ. Following reset, an absolute refractory
period is simulated by further suspending the subthreshold dynamics (6) for τabs seconds. Integration is
then resumed with the initial condition Vi(0) = V0.

We can rearrange the subthreshold dynamics (6) into the form

τi
dVi

dt
= V∞i − Vi (7)

where

τi =
Cm

gL +
∑

j gj
, and V∞i =

gLVL +
∑

j gjV
r
j

gL +
∑

j gj
. (8)

When viewed in this way, it is clear that the presence of time-varying synaptic inputs, in contrast to
electrical feedback connections, implies that the total synaptic conductance as well as the membrane
time constants τi, must depend on time via the input activity.

3.1.2 Synapse Dynamics

As an added degree of realism, the synapse conductances {gi} corresponding to excitatory feed-forward
inputs are not scaled versions of the input spike trains, but are instead modeled as filtered (averaged)
approximations. Given a discrete spike train pi(t), a post-synaptic current profile α(t), and a constant
input conductance multiplier ḡin, synapse integration dynamics can be modeled as

gi(t) = ḡin(α ∗ pi)(t). (9)

The change in conductance α(t) in response to an incoming spike is modeled as a decaying exponential
with finite initial rise time. While this choice of post-synaptic conductance response is indeed more
realistic than a simple decaying exponential of the form e−t/τsyn , the finite rise time exponential was
ultimately chosen because it closely approximates the detailed dynamics (4). In the simulations presented
in section 3.3.2, we simply pre-compute the response and perform a table lookup, rather than simulate
additional dynamics online. The particular parametrization we have chosen models the time course of
the conductance as a difference of two exponentials [11]

α(t) =
1

τd − τr

(
e−t/τd − e−t/τr

)
(10)

where the rise and decay time constants are denoted τr and τd respectively. Given this description of the
conductance, the free parameters were tuned so that the shape of (10) matched as closely as possible the
dynamics (4) given the parameters introduced in section 2. We find that τr = 0.4ms and τd = 4ms fits the
dynamics for the AMPA-based excitatory response, and τr = 0.2ms with τd = 5.4ms fits the dynamics
for the GABAA-driven inhibitory response. In the absence of multiple spikes arriving in a short time
interval, the channel dynamics (4) are well approximated by this more familiar “alpha function”3. Given
the firing rate constraints described above, it is unlikely that multiple spikes will arrive within a short
(e.g. 12.5ms) window.

In the interest of computational expediency, conductance changes for the excitatory inputs can be
computed by convolving the kernel (10) with the input spike trains prior to simulation. Convolution

3We will refer Equation (10) as an alpha-function, even though it is not, strictly speaking, of the form te−t/τ .
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amounts to summation of responses in the case where a spike arrives before the previous spike’s alpha-
function has decayed to zero. In the case of inhibitory synapses in the feedback paths of the circuit,
however, it is often more convenient to follow a slightly different convention: If a new spike arrives
before the previous spike’s alpha function has decayed to zero, the two need not be added. Instead, the
alpha function is “reset” to its initial value for that synapse. Resetting can be justified by making the
assumption that an incoming spike causes most of the channels in the vicinity of the synapse to open,
and that if another spike arrives, more than the maximum number of channels cannot open. Once again,
because firing rates are limited to approximately 100Hz, we can assume that both choices will produce
roughly equivalent behaviors.

With the input conductances computed beforehand, numerical integration of the system (7) is ac-
complished by discretizing time into finite steps δt, and applying an Euler update rule. The conductance
response α(t) for inhibitory spikes that occur during the simulation can be incorporated into the integra-
tion by simply retrieving from a table the particular conductance along the curve (10) corresponding to
the amount of time since the last spike arrived for the synapse of interest.

3.1.3 Circuit Organization & Simulation

As the stacked “planes” in Figure 5 (left) suggest, we combine multiple redundant copies of the circuit in
order to (1) reliably estimate input activity and (2) compute the maximum within a short time window.
Each individual “copy” of the circuit we have described is defined to have identical integrate-and-fire
parameters, conductances, and architectures. The external inputs applied to each copy, however, will
differ on a spike-by-spike basis and are not assumed to be synchronized, but will still have identical mean
activities. Thus the outputs of the circuits will also not be synchronized, but will have identical average
activities and mean times to the first spike. The collection of outputs taken from a group of circuits can
then be fed into subsequent stages so as to enforce the required timing constraints. One can think of
a group of such circuits as a larger meta-circuit capable of delivering an answer in a short amount of
time. In this case, the larger circuit requires K(2N + 1) neurons, for K circuit copies and N inputs. One
complex unit in the model [30] thus corresponds to this same quantity of integrate-and-fire neurons.

The physical cell parameters for the max circuit described in this section, and simulated in sec-
tion 3.3.2, were chosen as follows: leakage conductance gL = 25nS, feedback (self-)excitatory and in-
hibitory conductances gex = 10gL and ginh = 15gL, external (excitatory) input conductance gin = 4gL, re-
fractory delay τref = 8.5ms, inhibitory and excitatory reversal potentials Vinh = −80mV and Vinh = 0mV,
leakage potential VL = −70mV, reset potential V0 = −70.25mV, spike threshold potential Vθ = −54mV,
membrane capacitance Cm = 0.5nF, and maximum firing rate Fmax = 100Hz.
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3.2 Circuit Architecture for Gaussian-like Tuning in the Direction of the
Input Vector

3.2.1 Neural Dynamics

In this section we present a circuit which performs normalized tuning: given a preferred stimulus encoded
by the strengths of the input synapses of the circuit, we would like the output activity of the network
to peak when the input activity “vector” is collinear with the preferred stimulus, and fall off to zero,
much like a Gaussian does, when the input and preferred stimulus vectors move towards orthogonality.
In addition, the output activity should be normalized, in some way, by the total input activity. This
normalization can take on a variety of possible forms, and, depending on its strength, leads to behaviors
where the output activity of the circuit decreases or remains constant while the input activity increases,
for a given fixed angle between the inputs and the preferred stimulus. While the tuning circuit presented
in section 2 approximates a multidimensional Gaussian in the input space, the model presented in this
section exhibits the latter aforementioned behavior. The tuning function is Gaussian-like for the direction
of the normalized input vector with respect to a preferred stimulus, but is not shaped like a Gaussian in
the input space because the output activity does not decrease when the total activity increases for a fixed
angle between the input and the preferred stimulus vectors. Normalization is still, however, applied so
that the total output activity of the circuit does not increase when input activity increases, but instead
remains constant.

We approximate normalized tuning by delivering both divisive, normalizing inhibition and weighted
excitatory signals to units operating in nonlinear regions of the spike-rate transfer function. We define
the spike-rate “transfer function” to be the instantaneous output firing rate of a single integrate-and-
fire neuron versus the sum of the instantaneous arrival rates of spikes at the unit’s excitatory synapses,
assuming no additional background input or current applied to the neuron. This transfer function is
of course sensitive to the conductance of the input synapses, and we illustrate how different synaptic
conductances can lead to different transfer function shapes in Figure 6.

One possible tuning circuit architecture is shown in Figure 5 (right), where units in the lower layer
sum input activity and then inhibit a global pooling unit which also receives the original input. We take
as our desired tuning model the normalized dot-product formulation described in [30]

y = g

( ∑
j wjx

p
j

k + (
∑

j xq
j)r

)
(11)

where g(·) is a sigmoid nonlinearity, w = (w1, ..., wN )T is the vector of synaptic strengths, and x =
(x1, ..., xN )T is the vector of inputs to the circuit. If the (integer-valued) exponents in (11) are chosen so
that p < qr, then the output y will peak when the input x is “close” to the preferred stimulus encoded
by w, but will fall off as the total input activity increases while maintaining the same angle with the
preferred stimulus vector. If r = 1 and p ≈ q, then the output will peak when the input is close to the
preferred stimulus, and will remain at the peak activity level if the total input activity increases (but will
not increase any further as one would observe in the absence of any normalization).

In the spiking model described here, we attempt to roughly approximate exponentiation in the nu-
merator and denominator terms in Equation (11) by choosing suitable operating points on the spike-rate
transfer curves for units computing xq, and separately, xp. With r set to 1, p ≤ q means that neurons
implementing the denominator in Equation (11) should exhibit locally steeper, more nonlinear transfer
functions compared to numerator neurons. In the simulations that follow in section 3.3, the steepness of
the initial rise in the spike-rate transfer function is controlled by adjusting the conductance of the inputs
synapses only, however we found that even with a denominator conductance much larger than that of the
numerator, the circuit behaves as if p ≈ q with r = 1. In this case, the normalization compensates for
increasing input activity, but not to the extent that the total output activity begins to decrease, as dis-
cussed above: the “shape” of the tuning function in the input space is not a symmetric, multidimensional
Gaussian as shown in section 2.
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3.2.2 Circuit Organization & Simulation

After selecting parameters yielding suitable operating points and transfer functions, the circuit performs
the tuning function in two feed-forward stages. First, the sum of the input activities is computed and
represented by an output spike train 10 separate times. These 10 outputs are connected via shunting
inhibitory synapses to a single pooling unit which also receives multiple copies of the input. The inputs
at the pooling unit are each assigned specific conductance strengths which together encode a preferred
stimulus. In the second stage of the circuit, the weighted sum of the input activity is combined with
the effect of the inhibitory inputs in a divisive manner, giving normalized tuning at the output of the
pooling unit. As before, multiple copies of the entire circuit are utilized in order to meet realistic timing
requirements. One simple unit (Sn, for n > 1) in the model described by [30], would therefore correspond
to the 10 integrate-and-fire output (pooling) neurons for each of the 10 circuit copies. In general, each
tuning unit requires K(P + 1) neurons, for K circuit copies and P inhibitory normalization neurons per
circuit.

In the simulations presented in Section 3.3, we implement all units with integrate-and-fire neurons
with refractory periods, synaptic conductance functions, and numerical simulation methods identical
to those described in Section 3.1. We note, however, that unlike the maximum circuit, the tuning
architecture is purely feed-forward and therefore allows for simplified computer simulation. In particular,
the normalization and pooling components are decoupled and may be and computed independently, while
the effect of the alpha-function on the synaptic conductances may be computed using convolution (as
shown in Equation (9)) before numerical integration of the integrate-and-fire dynamics.

The physical cell parameters in the tuning circuit were chosen as follows: leakage conductance gL =
25×10−9S, excitatory input conductance gex = 8gL for the lower row of normalization units and excitatory
conductance gex = 4gL with inhibitory conductance ginh = 20gL for the upper pooling unit, refractory
delay τref = 8.5ms, and inhibitory reversal potential equal to the leak potential Vinh = VL = −70mV.
All other physical parameters were identical to those described in section 3.1.

3.3 Poisson Spike Code Simulations

3.3.1 Spike Process Model

In the simulations that follow, we use a Poisson distribution to model the spike arrival process. It is
worth mentioning that the variance of a homogeneous Poisson spike process with rate parameter λ is
also λ, and thus it is possible to occasionally generate biophysically unrealistic instantaneous firing rates
in simulation. One advantage of this fact, however, is that the Poisson model leads to a conservative
estimate as to the number of circuit copies necessary to achieve an accurate max computation within a
small time window (by averaging over multiple circuits); restricting the variance of our spike processes
can only improve simulation performance.
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Figure 8: Max simulations with 64 (left) and 144 (right) inputs (over 2300 trials). The abscissa gives the
true, desired activity level, while the ordinate gives the estimated instantaneous firing rate per output
neuron at a point 20ms after stimulus onset. In all trials the circuit is simulated with Poisson spike inputs
so that input activities are never exactly equal to the ideal discrete levels shown along the x-axis.

3.3.2 Maximum Circuit Simulations

To simulate the maximum circuit, we applied as inputs several sets of features returned by the S1 layer
of the model described in [30]. These features were computed by filtering a set of natural images with
oriented edge detectors at different scales, positions and orientations, and passing the result through a
sigmoid nonlinearity. The feature sets ranged in size from 64 (8x8 patches) to 484 (22x22 patches), while
the feature values were quantized into 4 levels, including “zero”. Given the features, we generated 10
copies of each input by sampling 10 separate Poisson spike input trains with mean arrival rates propor-
tional to the feature’s value. Thus, for N inputs, for example, we generated 10N Poisson spike processes,
and applied them to each input unit in each circuit copy. With 10 circuit copies, this corresponds to
100N separate input synapses. To evaluate the performance of the maximum circuit, we examine output
spike rates as well as transient output characteristics (e.g. time to the first spike).

In Figure 7 we show the time course of the circuit’s response to four 64-input stimuli in which the true
maximum activity was one of the respective allowed input levels. Each trace represents the combined
mean firing rate of 10 circuit copies estimated using a short Gaussian-shaped time window. The transient
response of the circuit can be seen to carry a great deal of information, with larger input activities evoking
earlier and larger responses. Figure 8 depicts the accuracy of the circuit given 64- and 144-input stimuli,
over 2300 different stimulus instances. Each open circle marks the approximate instantaneous firing rate
produced by each output neuron at a point 20ms following presentation of a distinct set of inputs. The
instantaneous firing rate was estimated by computing the total output firing rate in the simulation time
interval [15ms,25ms], and dividing by the total number of output neurons (64 or 144 of them, in this
case) for all circuit copies (10 in these simulations). We then arrive at an instantaneous firing rate per
output neuron, where there are N ×K outputs if the dimensionality of the input is N and the number of
circuit copies is K. Finally, because the circuit was presented with stochastic Poisson spike trains with
mean spike rate equal to one of the levels of activity specified by the quantized image features, it should
be noted that there is significant variance in the firing rates actually delivered to the circuit.

In order to score the accuracy of the maximum circuit, we divided up the range of the output firing
rates into 4 bins that proportionally preserve the division of the input domain into its 4 levels. Using
these bins, we then counted the number of instances where the output did not fall into the correct output
bin, as determined by the bin of the maximum input. Thus if the output firing rate falls into the correct
corresponding output bin, it is deemed a successful trial. Over all 2300 trials, only a small number did
not meet this criteria: in 98.48% of the 64-input trials and 98.13% of the 144-input trials, the correct
maximum bin was produced. We have also experimented with larger input sets, of size 256 and 484, and
found that accuracy scales well with the number of inputs. The slight decrease in accuracy with input
dimensionality seen in the above figures can be explained by the fact that more inputs offer more of an
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opportunity for there to be repeated inputs which take on the maximum value. Because the winner-take-
all dynamics involve noisy spike processes rather than continuous quantities, if there are several inputs
close to the maximum value, not all of them will be suppressed all of the time. This situation can lead
to exaggerated spike rates and results in a response that occasionally falls into a higher level bin than
appropriate.
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Figure 9: Simulations illustrating scaling (left) and tuning (right) properties of the tuning circuit shown
in Fig. 5 (right), with 10 circuit copies and 64 inputs. Although we have plotted the circuit response for
only positive angles in the right-hand panel, the tuning profile can be considered Gaussian-like because
it is symmetric in the angle.

3.3.3 Tuning Circuit Simulations

In this section we describe experiments which illustrate the behavior of the tuning circuit shown in Figure 5
(right). In simulating this circuit, care must be taken to ensure that inputs and outputs maintain realistic
firing rates. This constraint, however, complicates testing the tuning properties of the circuit because
constraints on the activities of the inputs translate into constraints on the way in which we are able to
test the circuit given specific desired angles between the input and the preferred stimulus. In particular,
we would like to choose a set of input activities

{
xj = (xj

i , . . . , x
j
N )T

}J

j=1
that sweep out a range of angles

{θ1 = 0, . . . , θJ = π/2} while satisfying

0 ≤ xj
i ≤ Fmax, and

N∑
i=1

xj
i = M (12)

where N is the number of inputs to the circuit, M is a fixed, total level of activity, Fmax is the maximum
allowed firing rate for a single neuron, and J is the chosen number of input instances that we will apply
to the circuit to test its behavior. The second (normalization) constraint in (12) is imposed when testing
the tuning properties in order to fix the operating point along the scaling curve. 4 If the total activities
changed over the input vectors, then the tuning properties would change, and responses for different
angles would not be directly comparable. Conversely, when testing the scaling properties of the tuning
circuit, the angle between the inputs and the preferred stimulus vector must be fixed while varying the
total activity over a chosen range.

To select vectors for testing the tuning behavior of the circuit, we set the first input vector in a set of
inputs equal to the preferred stimulus, x0 = w, and then generate a sequence of J vectors that successively
drift away from collinearity with the weight vector by applying the following sampling process: At each

4We stress however that normalized inputs are not required during ordinary operation of the circuit; we only normalize
the total activity here to evaluate tuning vs. input angle while controlling for overall input activity.
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iteration t, we begin by selecting two random components from x(t−1), x
(t−1)
u and x

(t−1)
v . Given a small

but fixed adjustment amount ∆, we generate the new vector x(t) by applying the following updates:

x
(t)
i = x

(t−1)
i , i 6= u, v (13a)

x(t)
u = x(t−1)

u + ∆ (13b)

x(t)
v = x(t−1)

v −∆ (13c)

If a component falls outside of the range 0 ≤ xi ≤ Fmax, then the candidate vector is rejected and a new
one is resampled. The preferred stimulus was chosen randomly, but fixed for the duration of the analysis.
The above procedure works well for finding vectors that slowly travel from collinear to angles near π/4
with respect to the weight vector when using the convention that we always take the smallest positive
solution θ to θ = cos−1(z) for z ≥ 0. 5. To generate inputs near orthogonality, we searched for a vector
v⊥w by solving the constrained optimization problem

v = arg min
x

{
cos−1

(
wT x

‖w‖‖x‖

)
− π

2

}2

subject to the constraints (12), and again using the convention that we select the smallest positive angle
satisfying θ = cos−1(z). We then applied the sampling procedure (13) to v and generated a sequence of
inputs whose angles with the preferred stimulus drifted from orthogonal to approximately π/4. Finally,
the scalar components of the activity vectors found above were used as mean arrival rates to sample
Poisson spike input trains that were then applied to the circuit during simulation. Vectors for the scaling
simulation were generated by fixing the angle to be collinear with the preferred stimulus for all test inputs,
and simply varying the length of the test vector over a range which ensured that the individual activities
did not exceed the maximum firing rate. In order to evaluate the performance of the circuit over a wide
range of conditions, we did not constrain the scalar input vector components or Poisson arrival rates to
take on one of the 4 allowed values represented in the model [30].

In Figure 9 we show the behavior of the circuit with fixed input angle over a range of activities (left
panel), and with fixed activity over a range of input angles (right panel). For fixed input activities, it
is clear that the circuit exhibits an appropriate fall-off in output activity as the input moves away from
the preferred stimulus in angle. We have shown only the positive angles corresponding to each response,
however the tuning curve is symmetric for negative angles as well, and thus approximates a Gaussian.

If the circuit is performing a normalized dot-product, as opposed to the canonical dot-product, then
regardless of the magnitude of the input, and for a fixed angle, the response should either decrease or stay
roughly constant depending on the choice of the exponents p, q and r in Equation (11). The left-hand
panel in Figure 9 verifies that this is approximately the case over a wide range of input activities: when
the average input firing rate is in between 5 and 20Hz, the output firing rate decreases slightly. Between
20 and 40Hz the output remains constant on average. Beyond 40Hz, the operating points of the neurons
in the circuit become shifted into a regime where the divisive normalization no longer over-compensates
for the “length” of the input, and we see a proportional increase in the output firing rate with respect
to the input firing rate. Whether tuning in the higher levels of visual cortex takes the shape of a multi-
dimensional Gaussian or not is still, however, under discussion. Several researchers have identified and
modeled cells exhibiting a wide range of contrast normalization and tuning characteristics, including units
whose output activity decreases or remains constant as a function of input activity [4, 12].

In all simulations, we assumed 10 circuit copies, and 10 input copies, 64 inputs, and took as “output”
the sum of the average spike rates of the 10 circuit outputs over the first 50ms of the simulation. The
dynamics were integrated using Euler step sizes δ = 0.1ms.

3.4 Problems and Future Goals

• The tuning circuit presented above may be made more flexible and possibly configured to behave
like a true Gaussian function in the input space through a more careful evaluation of the trade-off

5Normalized random vectors with positive uniformly distributed components form an absolute angle (modulo 2π) near
π/4 with the optimal stimulus on average, and will rarely form angles near π/2 or 0 radians. For this reason, we sample
input vectors starting at 0 radians moving to π/4, and then from π/2 back to π/4.
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between conductances in neurons implementing the numerator and denominator of Equation (11).

• The resolution of the output and the time delay from input presentation to stable outputs in both
circuits may be possibly improved by adding additional circuit copies and adjusting the integrate-
and-fire membrane time constants (subject to biophysical constraints).

• The potential role of feedback in the tuning circuit should be explored. It is likely that feedback
connections can be used to modulate the shape of the Gaussian-like tuning function by sharp-
ening neural responses, and (separately) might facilitate normalization if used in a gain-control
configuration.

• Learning the parameters that determine the Gaussian-like “centers” – that is the optimal stimulus
for the tuning circuit – is also an open problem in this case.

• More careful measurements of the time required by the computation and of the bandwidth of the
output activity are needed.

4 Discussion

We presented two different sets of circuits which implement the maximum and tuning operations under
two different coding schemes. The circuits serve as a proof of concept that these computations can be
performed by spiking neural circuits in the cortex.

We introduced a coding scheme in section 2 that is compatible with the spontaneous and evoked
firing rates observed in rat barrel cortex and presented a canonical microcircuit that is able to perform
both the max and the tuning operations, depending on different values for its synaptic weights. This
not only argues for the plausibility of the model of object recognition presented in [30], but also provides
support for the idea of a canonical microcircuit present in multiple (at least sensory) cortical areas [8].
The main architecture of the circuit follows the observation of monosynaptic excitation combined with
disynaptic inhibition found in layer IV of primary sensory areas. Although this connectivity has mostly
been investigated in the thalamo-cortical circuit, it is conceivable that higher cortical areas might follow
the same architecture, even though they receive their inputs from other cortical areas instead of thala-
mic nuclei. Both the max and tuning configurations of the presented microcircuit exhibit trial-to-trial
variability. Whether this variability is feasible for high-level computational models such as [30] needs to
be investigated, however, it appears to be compatible with the variability of neurons in cortex. More
stringent characterization of the variability in both cases is needed in order to quantitatively compare
models and experimental data.

Under the assumption that the peak bandwidth for communication between visual areas is limited
to approximately 2 bits of information over time intervals of approximatively 10-20 ms, the maximum
architecture described in section 3.1 is capable of accommodating large numbers of inputs while main-
taining high accuracy. Because the circuit was designed to operate given Poisson distributed inputs, it is
relatively robust to noise in the form of spike addition, deletion, and timing jitter. The use of multiple
redundant circuit copies is a critical feature that facilitates computation which satisfies biophysical tim-
ing and resolution constraints. Thus, several circuits may be connected together in series, as would be
required by the model in [30], while maintaining realistic timing properties. The tuning circuit presented
in section 3.2 was shown to have the desired tuning and normalization characteristics, and can also scale
to accommodate large numbers of inputs. As in the case of the max circuit, multiple tuning circuit
copies were utilized in order to satisfy the stringent timing and resolution constraints imposed by the
neuroscience of object recognition.

There are several important assumptions underlying the circuits presented in this paper that must be
considered when attempting to connect spiking artificial circuits to circuits in cortex. The winner-take-all
configuration of the max circuit in section 3.1 requires all-to-all inhibition between units within a circuit
copy, as well as some mechanism for self-excitation. Chemical positive feedback loops are probably more
likely to be found than autapses, if this circuit is implemented in cortex. All-to-all inhibitory connectivity
is an idealization that simplifies numerical and theoretical analyses, but is less likely to be found in the
brain than, for example, dense but random connectivity. The winner-take-all computation is, however,

16



thought to be ubiquitous in the brain, possibly underlying some aspects of attention and decision making.
Indeed, there are several network designs that exhibit winner-take-all behavior, including networks with
a single global inhibitory neuron instead of all-to-all inhibition [9]. It is therefore likely that the all-to-all
requirement in this max circuit (section 3.1) can be relaxed, while maintaining the desired performance;
the circuit we have presented relies on winner-take-all computations, but does not critically depend on
the particular instantiation of winner-take-all shown in Figure 5.

In the tuning circuit discussed in section 3.2, divisive, “shunting” inhibition was chosen as the normal-
ization mechanism, while the selection of an operating point in a nonlinear region of the units’ spike-rate
transfer function was used to approximate the effect of the exponents in the normalized dot-product (11).
Although several alternatives exist for both division and multiplication in spiking neural networks, we
believe the choices we have made are among the most plausible in light of the design constraints. If one
adopts the reasonable position that evolution has led to solutions which minimize both energy consump-
tion and real-estate in the brain, the architecture discussed in section 3.2 can be seen to minimize the
number of units necessary to accomplish normalization and exponentiation. It could also be that single
cells are capable of performing normalized tuning using intrinsic mechanisms, in which case the number of
cells in a cortical implementation is likely to be smaller than the number used in our circuit of simplistic
integrate-and-fire units.

In order to improve the match with physiological data, we plan to extend our models to be more
faithful to the morphology, biophysical properties and connectivity of different specific subtypes of cortical
neurons in layers IV and II/III of somatosensory and visual cortices, utilizing the limited quantitative
data available from other researchers [10, 19] and our own recordings.

In order to decide which of the presented models and variations, if any, best describes biophysical
reality, new experiments are needed to help distinguish between the alternatives. It would be interesting to
change the timing of the presented stimuli to test the temporal precision that is needed for the maximum
and tuning effects to occur, and what kind of behavior can be observed outside of that precision window.
In addition, experiments should try to extend from two to three or even more inputs (stimuli). This is
difficult for visual stimuli because of the small receptive field sizes of the cells under investigation but it
would help to tease apart different possible mechanisms as their behavior for more than two inputs can
be significantly different. The rat vibrissae and barrel cortex system provides a suitable preparation for
this task since it is much easier to stimulate more than two vibrissae at the same time. Finally, it is quite
possible, despite the general skepticism of cortical physiologists, that the two operations described here
may be performed by circuits of mostly non-spiking neurons, as proposed in [30]. Such models may need
to be reconsidered and improved.
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